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Abstract

Tnis study investigated the effects of the violation of the assump-

tion of normality coupled with the condition of multicollinearity

upon the outcome of testing the hypothesis B * 0 in the two-pre-

dictor regression equation. A monte carlo approach was utilized in

which three different distributions were sampled for two sample sizes

over thirty-four population correlation matrices. The preliminary

results indicate that 'leWier the violation of the assumption of nor -

vertit4g.
mality ger-thepmessuca=silmew4,6,6eyildisearAtitihas-aay significant effect

upon the outcome of the hypothesis testing procedure. As was expected,

however, the population correlation matrices with extremely high col-

linearity between the independent variables resulted in large stan-

dard errors in the sampling distributions of the standardized re-

gression coefficients. Also, these same population correlation

matrices revealed a larger probability of committing a type II error.

Many researchers rely on beta weights to measure the importance of

predictor variables in a regression equation. With the presence of

multicollinearity, however, these estimates of population standardized

regression weights will be subject to extreme fluctuation and should

be interpreted with caution, especially when the sample size involved

is relatively small.
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The Effect of Multicollinearity and the Violation

of the Assumption of Normality on the Testing

of Hypotheses in Regression Analysis

One of the goals of applied research is to define functional

relationships among variables of interest. If such relationships

can be found, then this knowledge can be used for prediction pur-

poses. For example given a subject's scores on selected X variables,

the mathematical relationship can be utilized to predict that same

subject's score on the associated Y variable. If the relationship

is not a stable one, then perfect prediction is not possible. This

is generally the situation that exists in social science research.

The best that a prediction rule can do is to provide a 'good' fit to

the data. Nevertheless, knowledge of such a rule can greatly decrease

the errors in prediction and can be of practical utility in behavioral

research (Hays, 1963).

Multiple linear regression is one mathematical approach to the

problem of prediction. Given a set of independent variables and a

criterion variable, least squares regression weights can be calculated

which will maximize the squared multiple correlation between the cri-

terion vector and the predicted criterion vector (Kerlinger, 1973).

If the variables used in the determination of the regression weights

are transformed into z score form, then the resulting weights are

standardized regression coefficients and sometimes are referred to
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as beta coefficients (McNemar, 1969). In the remainder of this

1

papL. the symbol a will be used to refer to the population stan-

dardized regression coefficient and the symbol b will represent

the sample weight which estimates it.

These b weights have been interpreted ty some researchers to

reflect the strength and direction of the relationship between an

1

independent variable and the criterion. However, b weights in most

cases are not a useful measure of the importance of a predictor var-

iable when the independent variables are highly intercorrelated (Dar-

lington, 1968). There is no requirement in multiple regression anal-

ysis that the predictor variables used in the regression equation be

uncorrelated or orthogonal (Johnston, 1963). Fiom a linear algebra

perspective this is reasonable since a criterion vector (dependent

variable) can fit perfectly into a common vector space spanned by

basis vectors (independent variables) which are not orthogonal. (The

criterion vector can be a linear combination of these basis elements).

Therefore, situations may occur in regression analysis in which the

independent variables are highly intercorrelated. The presence of

such highly intercorrelated predictors is termed multicollinearity.

These predictor variables are, in fact, measuring approximately the

same thing which makes the determination of the relative influence

of each indepeLlent variable upon the criterion virtually impossible

to disentangle (Goldberger, 1968). Also, the presence of multicol-

linzarity increases the standard error of b values which results in

1

a statistically less consistent estimator of 0 (Goldberger, 1968).

5
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When exact multicollinearity occurs, one of the independent

variables becomes a multiple of another. In the case of two predictor

variables this would mean that the best fitting function which should

be represented by a plane (see Figure 1) can instead be represented

by a line. Again visualizing this situation from the perspective

of linear algebra, it is evident that since linear dependencies

cannot exist among basis elements which span a common vector space,

the dimensionality of the vector space would in this case be re-

duced to two and the best fitting function would degenerate to one

of a line. Exact multicollinearity is rare in applied research but

multicollinearity is a rather common occurrance.

Statistical tests of significance can be ran to determine whether

or not a specific 6 value is different from zero in the population.

In order to test hypotheses such as these, an assumption of normality

must be made in the distribution of the criterion measures (Draper &

Smith, 1966). This assumption is rarely met in psychological or

social science research. Many variables of interest to psychologists

and educators are extremely skewed in the population making such an

assumption invalid.

One of the goals of this study was to examine the effect of the

violation of this assumption upon the probability of committing a

type II error in the testing of hypotheses based upon b coefficients.

In order to answer this research question and the others which will

be explained in turn, a monte carlo approach was taken. Extremely
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skewed distributions were included in the distributions of the vari-

ables in the populations for the purpose of making the research more

meaningful.

Turning once again to the problem of multicollinearity, one might

consider the effect of highly correlated variables upon the outcome

of the testing of hypotheses such as 110:13 = 0 for each independent

variable involved in the regression equation. Ostle (1963) states

that the F tests used in testing these hypotheses are not all indepen-

dent since the predictor variables themselves may be correlated. This

was another goal of the study, to investigate the effects of multi-

collinearity upon the probability of committing a type II error in

the testing of these hypotheses.

In review the main focus of the authors was the effect of multi-

collinearity coupled with the violation of the assumption of normality

in the criterion measures upon the outcome of the testing of hypotheses

concerning population regression coefficients in the two-predictor

regression equation. Answers were sought to the following specific

research question:

1. What effect does the violation of the assumption of

normality have upon the probability of committin3 a

type II error for alpha .05 in the testing of the null

hypothesis H0:0i = 0 (i = 1,2) for both small and large

sample sizes?

2. What effect does the presence of multicollinearity

have upon the probability of committing a type II
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error in the testing of th?se hypotheses for small

and large samples?

3. Does this effect (if any) change as the distribution

sampled becomes more skewed?

The ma matical model under investigation may be written as:

Zy = 81B1 4 82B2 + e

or equivalently:

Z = Z
x
0" + e

y

where Z is an (n x 1) vector of observations in z score form

Z
x

is an (n x 2) matrix of known form whose elements are also

standardized

8" is a (2 x 1) vector of parameters

e is an (n x 1) vector of errors

and where the e
i
are independently and normally distributed (Draper &

Smith, 1966). This last statement is needed in order to test the

significance of . We must also make the important assumption that

the linear model defines the best functional fit to the data in the

population. This assumption can be met by sampling from a multi-

variate normal distribution (Blalock, 1972) which was accomplished

through the monte carlo program.

The test of the null hypothesis that a specific 0 value was dif-

ferent from zero was determined from the following test statistic

(McNemar, 1969):

F 1 2
(R

2
- R

2
)/(m

1
- m2)

(1 - R
2
)/(N - m

1
- 1)

1
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where R is the multiple correlation coefficient based u ?on m
1

of
1

the predictor variables and R2 is the multiple correlation coefficient

based upon m2 of the remaining variables where m2 = ml -1. Sample

b values were calculated using the following formulae (McNemar,

1969):

ryi - ry2r12
b

ry2 - ryiri2

bl
( 1 - r

12

22)
( 1 - r12)

The population correlation matrices, sample sizes and population

distributions chosen will be outlined in the next section.

Method

In order to answer the research questions it seemed necessary

to construct approximate sampling distributions of bl and b2 values

from the sample regression equation:

zy = blzl + b2z2 + e

The hypotheses dealt with the violation of the assumption of normality,

level of collinearity between the independent variables, sample size

and the effect of these upon the hypothesis testing of S . Three

different distributions were chosen from which to generate random

samples of z scores; the multivariate normal, x
2
with 5 degrees of

freedom and x
2
with 20 degrees of freedom. Three different levels

of intercorrelation between the predictor variables were chosen:

p
12

= .95, .70 and .45. In addition two different sample sizes were

selected: n = 25 and n = 100.

10
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The basic element in the monte carlo procedure was the intercor-

relation between the independe.'t variables in the population. At

one level of intercorrelation between Z
1

and Z
2

different levels of

correlation between Zy and Z
1
were selected as were different levels

of correlation between Z and Z2. Thirty-four different triplets

of population intercorrelations among Zy , Z1 and Z2 were selected and

are displayed in Table 1. Five cases involved a p12 value of .95,

fourteen cases involved a p
12

value of .70 and fifteen cases involved

a p
12

value of .45. These triplets of population Pearson Product-

Moment correlation coefficients were transformed into factor structure

matrices which were then used as input into a monte carlo program

written by the main author and based upon a previously developed

Frotran program (Wherry, 1965). By focusing in on one of the popula-

t.i.on correlation matrices, the logic behind the monte carlo technique

can be more easily explained and comprehended.

For one set of fixed p , and
yl

p
y2

P12 values a factor structure

matrix was calculated and a distribution and sample size were chosen

for generating sample ryi, ry2 and r12 values. Because the authors

were interested in examining standardized regression coefficients which

are based upon z score values, these sample r coefficients were all

that was needed in order to calculate b
1

and b
2
coefficients for a

sample regression equation. Five-hundred sample correlation matrices

were produced for each selected distribution and sample size, therefore

five-hundred sample regression equations in z score form were developed
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for the population regression equation. The five-hundred bl coeffi-

cients were then used to form an approximate sampling distribution for

b1. The same procedure was followed for b2.

As each sample b' value was produced, an F test was used to

determine if the regression weight was significantly different from

zero at the .05 level of significance. This information was tabulated

and used in the calculation of the empirical probability of committing

a type II error: which was estimated by taking the proportion of b'

values which were retained in the hypothesis testing procedure. All

the population 0' values present in this study (see Table 1) were

different from zero. Therefore, the only kind of error which could

be examined was type II error; the probability of retaining a false

hypothesio.

For each factor structure matrix six approximate sampling dis-

tributions for b
1
were developed and six approximate sampling dl.stri-

butions for b
2
were simultaneously developed. One was formed for each

comoination of

X20; n=100 and

distribution and n size: multivariate normal, x
5

and

n=25. Since there were thirty-four factor structures

in total, two-hundred and four approximate sampling distributions were

formed for each b' coefficient.

Characteristics of the sampling distributions, population p

values, distributional type, sample size and population 0 values

were examined for the presence of relationships in accordance with

the research hypotheses. Table 2 through Table ;a contain the summary

statistics of the sampling distributions of each b'.

12
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Results

Table 2 and Table 3 consist of calculations based upon the bias

involved in each sampling distribution. Since the moe'' ed in

the regression procedure was fixed, the mean of each sLuyiing distri-

bution of b' should equal the population 8' value. In Table 2 and

Table 3, however, there is evidence of bias. The average bias,

whether mean or median, is slight: the =nea4=-.056 while

the bias is .051. Since each sampling distribution involved

a finite number of b' values and was, therefore, only approximate,

it would seem logical to attribute the presence of bias to the approxi-

mation technique. By scanning each table across distributional shape,

(Dist. Type), there appears to be little difference in the reported

statistics and no consistent pattern appears as the deviation from

normality becomes more marked. A Spearman correlation coefficient

was calculated between bias and distribution shape and was found to

be non significant in all cases. (see Table 8). Likewise, by scanning

the columns of Table 2 and Table 3 there appears to be little differ-

ence in the reported statistics. A Spearman correlation coefficient

was calculated between bias and level of intercorrelation between

predictors in the population. This coefficient was also found to be

nonsignificant in all but one case. (see Table 8).

Tables 4 and 5 contain statistics on the standard deviations

of the sampling distributions of the b' values. Scanning across each

table from left to right there appears to be little change in the

average of the standard errors for the b' coefficients. The Spearman

13
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correlation coefficient calculated between empirical standard error,

(S and S ), and distributional type was not found to be significant.
el e2

As was expected, however, there is a significant correlation between

the standard error of each b' sampling distribution and the level

of intercorrelation present between the independent variables in

the population. (see Table 8). By examination of Tables 4 and 5 one

can see a decrease in the average standard error of the sampling dis-

tributions of the b' values as the p
12

value decreases from .95 to .45.

This decrease is consistent for, a sample size of 25 and a sample size

of 100 regardless of the distribution samples. As the oi2 value

decreases, the spread of the standard error values for the distri-

butions also decreases as indicated by the standard deviation statis-

tics. it1a r-40, G A.

12

In Table 6 and Table 6a there appear statistics calculated on

difference values obtained by subtracting the theoretical probability

of committing a type II error from the empirical proportion of false

hypotheses which were retained. Again, there seems to be little change

among the average of the difference values as the shape of the dis-

tributions sampled becomes more skewed. However, as p12 decreases,

the average difference between empirical and theoretical probability

gr h.v l'5°°
of committing a type II _rror also decreases. The maximum difference

appears when p12 equals .95; the maximum difference at this level is

.502. As p12 decreases to .45, the maximum difference is found to be

.192. The spread of the difference values decreases as the p
12

value

14
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C1p)%

v
decreases from .95 to .45. A significant correlation was found to

exist between the difference values, (Dify25),Diff2(25)), and p12

for a sample size of 25. As the sample size increased to 100, the

correlation was found to be non-significant. These difference values

can be attributed to the approximation of the monte carlo technique.

When p
12

was relatively low and the sample size was large, the ap-

proximation technique was much more accurate.

Table 7 and Table 7a contain the proportion of times the null

hypothesis was falsely retained; an approximation of the probability

of committing a type II error. As the distribution becomes more

skewed, there is no significant change in the average proportion of

times a false hypothesis was retained regardless of sample size. The

Spearman correlation coefficient calculated between empirical propor-

tion of type II errors committed and distributional shape was found

to be non-significant regardless of sample size. The largest Spearman

found was .03. fr 10 rt. h ySi

As the p
12

value decreases, the probability of committing a type

II error also decreases as would be expected. This finding is con-

sistent for all distributions sampled for both sample sizes. The

average type II error fer...sagaireSsitimsefonNe within a level of p 12

is smaller for a sample size of 100 than for one of 25.

15
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Conclusions and Implications

The results illustrate that a departure from normality in the dis-

tribution from which rLadom samples are selected for inclusion in a re-

gression equation with two predictors does not significantly influence

the probability of committing a type II error in the testing of the

null hypothesis H0:01 = 0; (i = 1,2). Because the assumption of nor-

mality can rarely be met in the distribution of psychological and

educational variables, and if it seems plausible to generalize beyond

two independent variables, the results indicate that this violation

should not be of great concern to a researcher.

Level of intercorrelation confounded with a departure from nor-

mality did not significantly influence the probability of committing

a type II error either.

As was expected, multicollinearity does have an effect upon the

sampling distribution of b' values. This fact is consistent with the

theory behind the effects of multicollinearity upon distributions of

standardized regression coefficients. The more highly the predictor

variables are correlated, the larger the standard error of the b' values.

This implies that a confidence interval around a b' value for the pur-

pose of estimating a' would have to be much larger in the case of a re-

gression equation with an r12 value which is exceedingly high. The

smaller the amount of collinearity between two predictors and the larger

the sample size, the more statistically consistent the b' values are:

in other words the probability that the b' value is close to the a

value of the population regression equation is increased.

16
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Based upon the findings of this research report it would seem

that researchers dealing with variables selected from populations

with extremely skewed distributions do not have to be concerned with

any detrimental effects upon the probability of committing a type II

error. However, with small sample sizes and highly correlate pre-

dictors, generalizations about the contribution of an independent

variable to any regression equation should be made with caution.

Sample b' values in situations such as these are subject to extreme

fluctuation and, although they are unbiased in the long run, most

researchers are dealing with only one regression equation and, there-

fore, only one estimate of any population a value.

17
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Toole 1

Population Intercorrelaionsa Specified in Monte Carlo Procedure
and Accompanying Theotetical Standardized Regressicu Weights

Pyl
P
y2 P

12
f)

1
a
2

.95 .95 .95 .4872 .4872

.70 .70 .95 .3590 .3590

.45 .70 .95 -2.2051 2.7949

.70 .45 .95 2.7949 -2.2051

.45 .45 .95 .2308 .2308

.70 .95 .70 .0606 .9020

.45 .95 .70 -.4216 1.2451

.95 .70 .70 .9020 .0686

.70 .70 .70 .4118 .4118

.45 .70 .70 -.0784 .7549

.00 .70 .70 -.9608 1.3725

.95 .45 .70 1.2451 -.4216

.70 .45 .70 .7549 -.0784

.45 .45 .70 .2647 .2647

.00 .45 .70 -.6176 .8824

.70 .00 .70 1.3725 -.9608

.45 .00 .70 .8824 -.6176

-.45 .00 .70 -.8824 .6176

-.70 .00 .70 -1.3725 .9608

.70 .95 .45 .3417 .7962

.45 .95 .45 .0282 .9373

.95 .70 .45 .7962 .3420

.70 .70 .45 .4828 .4828

.45 .70 .45 .1693 .6238

.00 .70 .45 -.3950 .8777

.95 .45 .45 .9373 .0282

.70 .45 .45 .6238 .1693

.45 .45 .45 .3103 .3103

.00 .45 .45 -.2539 .5643

-.45 .45 .45 -.8182 .8182

.70 .00 .45 .8777 -.3950

.45 .00 .45 .5643 -.2539

-.45 .00 .45 -.5643 .2539

-.70 .00 .45 -.8777 .3950

a
p
yl

is the population correlation between the criterion

variable, z
Y

, and the predictor variable, z
1

p
y2

is the popu-

lation correlation between the criterion variable, z , and the

predictor variable, z,). p12 is the population correlation between

the independent variables, z1 and z2. These population correlations
were utilized in the determination of factor structure matrices for
input into the Monte Carlo technique. There are five factor struc-
tire matrices which have a p12 value of .95, fourteen which have
a p

12
value of .70 and fifteen which have a p

12
value of .45.

20
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Table 8

Spearman Correlation Coefficientsa

27

Dist.

Typec P
12

d
Dist.

Type p12

Bias
1

b

Bias
2

Diff
1

Diff
2

S
e1

S
e2

N

(25)e

(25)

-.02 -.02

p<.43 p<.41

.05 -.10

p <.31 p<.16

.05 .28

p<.31 *p <.00

.02 .24

p<.41 *p<.01

.05 .60

p<.32 *p<.00

.06 .59

p.29 *p<.00

(25)

Bias
1

Bias
2

Diff
1

Diff
2

S
e
1

S

e2

(100)

(100)

.04 -.19

p<.34 *p<.03

-.00 .04

p<.49 p<.36

-.00 .n6

p<.48 p<.kti

.00 -.00

p<.50 p<.49

.03 .59

p<.38 *p<.00

.02 .58

p<.41 *p<.00

(100)

aSome of the correlation coefficients tabled were calculated on
variables whose elements involve statistics of sampling distributions.
These statistics were tabulated from regression equations originally

involving a sample size of 25 or a sample size of 100. The number of

cases upon which the significance was determined was 102: the number

of factor structures (34) multiplied by the number of distributions

sampled (3), which equals the number of sampling distributions examined.

b
See notes tables 2 and 3.

c Dist. Type refers to the shape of the population from which the

z scores were generated for input into the regression equations for the

purpose of constructing sampling distributions. Three distributions

were. involved: normal, X2 and X
205

d
p
12

is the population correlation between the predictor variables.

Three levels were examined: .95, .70 and .45.

eDiff, (25) can vary between zero and one and was calculated by sub-

tracting the theoretical probability of committing a type 11 error from

the empirical proportion of type II errors committed In the testing of

the hypothesis 110:61 = 0, at a = Diff2 (25) was determined In the

same manner for the hypothesis H0:82 = 0, as was Diffi(100) and 1)1ff2(100).

f is the empirical standard deviation of the sampling dintribu-

CI

tion of b
1

values.

*Significant at a .05.
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Table 9

Pearson Correlation Coefficientsa

Bias
1

1

Bias
2

Diff
1

Diff
2

(25)e (25) Se
f

1

Se

2

Bias 1.00 -.65 .13 .20 .07 .08
1 *p .00 p .19 *p .05 p<.49 p<.40

Bias
2

-.65 1.0C -.30 -.29 -.29 -.28
*p<.00 *p<.00 *p<.00 *p<.00 *p<.01

Diff
1

(25) .13 -.30 1.J0 .86 .72 .70

p<.19 *p<.00. *p<.00 *p<.00 *p<.00

Diff (25) .20 -.29 .86 1.00 .66 .70
2

*p<.05 *p<.00 *p<.00 *p<.00 *p<.00

S .07 -.29 .72 .66 1.00 .99

e1 p=.49 *p<.00 *p<.00 *p<.00 *p<.00

S .08 -.28 .70 .70 .99 1.00

e2 p<.40 *p<.01 *p.<00 *p<.00 *p<.00

N - (25)

(See notes table 8)

*Significant at a = .05.
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Table 10

Pearson Correlation Coefficients
a

29

Bias
1

b.
Bias

2

Diff
1

Diff
2

(100)e (100) S
e

f

1

S
e
2

Bias 1.00 -.65 -.12 -.06 -.22 -.22
1

*p<.00 p<.21 p<.56 *p<.03 *p<.02

Bias -.65 1.00 -.06 -.10 -.06 -.02
2

*p<.00 p<.57 p<.34 p<.57 p<.81

Diff (100) -.12 -.06 1.00 .65 .57 .58
1

p<.21 p<.57 *p<.00 *p<.00 *p<.00

Diff (100) -.06 -.10 .65 1.00 .59 .57
2

p<.56 p<.34 *p<.00 *p<.00 *p<.00

S -.22 -.06 .57 .59 1.00 .99

e1 *p<.03 p<.57 *p<.00 *p<.00 *p<.00

S -.22 -.02 .58 .57 .99 1.00

e2 *p<.02 p<.81 *p<.00 *p<.00 *p<.00

N = (100)

(See notes table 8)

*Significant at a = .05.
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